Uncovering mental representations with Markov chain Monte Carlo.

نویسندگان

  • Adam N Sanborn
  • Thomas L Griffiths
  • Richard M Shiffrin
چکیده

A key challenge for cognitive psychology is the investigation of mental representations, such as object categories, subjective probabilities, choice utilities, and memory traces. In many cases, these representations can be expressed as a non-negative function defined over a set of objects. We present a behavioral method for estimating these functions. Our approach uses people as components of a Markov chain Monte Carlo (MCMC) algorithm, a sophisticated sampling method originally developed in statistical physics. Experiments 1 and 2 verified the MCMC method by training participants on various category structures and then recovering those structures. Experiment 3 demonstrated that the MCMC method can be used estimate the structures of the real-world animal shape categories of giraffes, horses, dogs, and cats. Experiment 4 combined the MCMC method with multidimensional scaling to demonstrate how different accounts of the structure of categories, such as prototype and exemplar models, can be tested, producing samples from the categories of apples, oranges, and grapes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying representations of categories of discrete items using Markov chain Monte Carlo with People

Identifying the structure of mental representations is a basic problem for cognitive science. We present a method for identifying people’s representations of categories that are defined over a set of discrete items, such as a collection of images. This method builds on previous work using Markov chain Monte Carlo algorithms as the basis for designing behavioral experiments, and we thus call it ...

متن کامل

Running head: COMPARING METHODS FOR IDENTIFYING CATEGORIES Testing the efficiency of Markov chain Monte Carlo with people using facial affect categories

Exploring how people represent natural categories is a key step towards developing a better understanding of how people learn, form memories, and make decisions. Much research on categorization has focused on artificial categories that are created in the laboratory, since studying natural categories defined on high-dimensional stimuli such as images is methodologically challenging. Recent work ...

متن کامل

Mental Sampling in Multimodal Representations

Both resources in the natural environment and concepts in a semantic space are distributed “patchily”, with large gaps in between the patches. To describe people’s internal and external foraging behavior, various random walk models have been proposed. In particular, internal foraging has been modeled as sampling: in order to gather relevant information for making a decision, people draw samples...

متن کامل

Testing the Efficiency of Markov Chain Monte Carlo With People Using Facial Affect Categories

Exploring how people represent natural categories is a key step toward developing a better understanding of how people learn, form memories, and make decisions. Much research on categorization has focused on artificial categories that are created in the laboratory, since studying natural categories defined on high-dimensional stimuli such as images is methodologically challenging. Recent work h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cognitive psychology

دوره 60 2  شماره 

صفحات  -

تاریخ انتشار 2010